Skip to content

Virus Shows Promise for Imaging and Treating Pancreatic Cancer

September 15, 2011

Bookmark and Share

•    Virus construct may work to kill pancreatic cancer cells.
•    Therapeutic response to virus treatment can be noninvasively monitored.
•    Virus construct could facilitate targeted radiotherapy.

SAN FRANCISCO — Researchers are investigating a potential treatment and noninvasive imaging modality for pancreatic cancer that shows promise, according to researchers at Memorial Sloan-Kettering Cancer Center in New York, N.Y., and Genelux Corporation in San Diego, Calif.

The vaccinia virus construct GLV-1h153, engineered to encode for the human sodium iodide symporter gene (hNIS), is a promising candidate for viro-therapy of cancer and for long-term noninvasive monitoring of therapeutic response via deep tissue imaging modalities such as positron emission tomography (PET). This virus construct can also be used for targeted radiotherapy, according to study results presented at the Second AACR International Conference on Frontiers in Basic Cancer Research, held Sept. 14-18, 2011, in San Francisco.

Dana Haddad, M.D., Ph.D., who at the time of the study was a postdoctoral research fellow at Memorial Sloan-Kettering Cancer Center and is now a resident at the Mayo Clinic in Scottsdale, Arizona, said GLV-1h153-treated pancreatic tumors from more than 50 mice were treated and imaged to provide insight into tumor therapeutic response.

The combination of GLV-1h153 and radioiodine (131I) was promising for targeted radiotherapy and destruction of pancreatic tumors.

“We expected that we would be able to noninvasively detect virus replication in tumors using this imaging system, but we could not predict the timing of this, how long we could repeat serial imaging and whether this would actually provide information about therapeutic response,” said Haddad.

The researchers were initially discouraged when the PET signal in pancreatic tumors began to fade about two weeks after treatment with the virus, according to Haddad.

However, she said they investigated what could be the cause of this loss of signal and were “pleased to ascertain that it was likely due to tumor kill and necrosis.” They found that hNIS-mediated radiouptake noninvasively imaged with PET initially provided information into the presence of viral replication in the tumor, and later provided insight into the therapeutic response and biological activity of cancer cells.

“When the tumor began to die due to the effects of the virus, the PET signal began to decrease,” said Haddad.

“We were further pleased to observe that although tumor kill with a very low dose of virus was not very impressive, we could achieve potent tumor kill when we combined virus treatment with systemic radiotherapy. Using lower doses of virus and radiotherapy could minimize potential toxicity and side effects associated with both treatments,” said Haddad.

Further study of viral and radiotracer dosing, and their effects on therapeutic response and imaging potential is currently being planned, said Haddad.

# # #

Follow the AACR on Twitter: @aacr #aacr
Follow the AACR on Facebook:

The mission of the American Association for Cancer Research is to prevent and cure cancer. Founded in 1907, the AACR is the world’s oldest and largest professional organization dedicated to advancing cancer research. The membership includes 33,000 basic, translational and clinical researchers; health care professionals; and cancer survivors and advocates in the United States and more than 90 other countries. The AACR marshals the full spectrum of expertise from the cancer community to accelerate progress in the prevention, diagnosis and treatment of cancer through high-quality scientific and educational programs. It funds innovative, meritorious research grants, research fellowships and career development awards. The AACR Annual Meeting attracts more than 18,000 participants who share the latest discoveries and developments in the field. Special conferences throughout the year present novel data across a wide variety of topics in cancer research, treatment and patient care. The AACR publishes seven major peer-reviewed journals: Cancer Discovery; Cancer Research; Clinical Cancer Research; Cancer Epidemiology, Biomarkers & Prevention; Molecular Cancer Therapeutics; Molecular Cancer Research; and Cancer Prevention Research. AACR journals received 20 percent of the total number of citations given to oncology journals in 2010.

Media Contact:
Jeremy Moore
(267) 646-0557
In San Francisco, Sept. 14-18:
(415) 229-2767

No comments yet

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: